科技前沿|上海硅酸盐所在金属有机电池材料结构设计方面取得系列进展


来源:中国粉体网   星耀

[导读]  近日,中国科学院上海硅酸盐研究所刘建军研究员团队和厦门大学张力教授团队合作,利用计算电化学方法与数据挖掘技术结合,研究晶体中分子间的堆垛方式以及局域结构成分,从而筛选和设计高性能金属有机电极材料。

中国粉体网讯  近日,中国科学院上海硅酸盐研究所刘建军研究员团队和厦门大学张力教授团队合作,利用计算电化学方法与数据挖掘技术结合,研究晶体中分子间的堆垛方式以及局域结构成分,从而筛选和设计高性能金属有机电极材料。相关工作发表在Advanced Materials 和Materials Horizons上。


1 金属-有机框架材料


金属-有机框架材料(MOFs)是由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料,因具有高孔隙率、大比表面积、孔径可调以及表面官能团丰富等优点而成为一类具有应用潜力的锂离子电池材料。但是大部分金属有机电池材料由于电化学活性位点局限在金属离子与官能团位点,导致可逆比容量低以及倍率性能差的问题。


2 高性能电池材料——Li2BPDCA


传统金属有机电池材料设计主要基于分子内官能团调控,对比容量与倍率性能的提升非常有限。通过计算电化学方法与电化学实验结合,研究团队提出了“弱键通道(secondary-bonding channel)”的结构设计理念,通过分子内官能团与分子间堆积弱键通道的结构设计,发现以金属有机框架结构的Li2BPDCA为典型代表的一系列高性能电池材料。


计算研究表明,Li2BPDCA不但可实现基于官能团 (-C=O和-C=N) 的法拉第电化学反应,还可通过分子间的弱氢键和层间键合作用活化非官能团-C=C-位点的电化学活性,实现Li+的插入式赝电容存储效应。实验证明了在5A/g电流密度下实现1206mAh/g的超高可逆容量和优异的倍率性能(在20A/g保持495mAh/g的比容量)。基于“弱键结构”设计实现快速、高比容量的Li+存储新机制表现出插层式赝电容的特征,完全区别于传统有机电极材料官能团的氧化还原反应机制。 


 3“有机-无机”局域结构复合的金属电极材料


受分子间氢键可诱导锂离子嵌入的启发,研究团队进一步设计了一类有机-无机局域结构复合的金属有机材料FeF3(4,4'-bpy),其中无机离子团[FeF4]内具有强负电性的F离子不仅可形成强配体场来获得高活性的Fe3+,还可与CH形成氢键来活化-C=C-的电化学活性。基于计算电化学和实验测试,发现FeF3(4,4'-bpy)可基于电化学反应在50mA/g的电流密度下实现793.1mAh/g的高比容量,并且锂离子的迁移系数高达10.02x10-7cm2/s,具有良好的倍率性能(1A/g的电流密度仍有实现466mAh/g的高比容量)。进一步筛选出一系列“有机-无机”局域结构复合的高容量金属有机电极材料,例如MnF3(4,4'-bpy)(799.6 mAh/g)和VF3(4,4'-bpy)(811.7 mAh/g)。


 


4 结语


自从几年前首次发现导电MOFs以来,许多团队一直致力于开发不同应用的版本,但没有人能够获得如此详细的材料结构。对这些结构的细节理解得越好,越能帮助设计出更好的材料,而且速度更快。据麻省理工能源教授Mircea Dinc称,由于MOFs具有很多材料的特性,形成了一个广泛的、具有不同特性的可能变化的家族,因此它们允许研究人员设计特定用途所需的特定种类的材料。


参考来源:中国科学院上海硅酸盐研究所、分子科学学报、科学报告与资讯等。

(中国粉体网编辑整理/星耀)

注:图片非商业用途,存在侵权请告知删除!


推荐6

作者:星耀

总阅读量:9691053

相关新闻:
网友评论:
0条评论/0人参与 网友评论

版权与免责声明:

① 凡本网注明"来源:中国粉体网"的所有作品,版权均属于中国粉体网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:中国粉体网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

粉体大数据研究
  • 即时排行
  • 周排行
  • 月度排行
图片新闻