固体所在含氮高能密度材料研究方面取得新进展


来源:固体所

[导读]  近日,中科院合肥研究院固体所计算物理与量子材料研究部在聚合氮高能密度材料设计方面取得新进展,通过遗传算法结合第一性原理计算发现了具备高能密度材料特征的两种新型N-F化合物。

中国粉体网讯  近日,中科院合肥研究院固体所计算物理与量子材料研究部在聚合氮高能密度材料设计方面取得新进展,通过遗传算法结合第一性原理计算发现了具备高能密度材料特征的两种新型N-F化合物。相关研究结果以“Polymerization of Nitrogen in Nitrogen-Fluorine Compounds under Pressure”为题发表在Journal of Physical Chemistry Letters (J. Phys. Chem. Lett., 12, 5731−5737(2021))上。


聚合氮是新型的高能密度材料,其含能密度是传统含能材料(如TNT)的5倍。通过压缩氮气得到聚合氮,合成压力较高,且高压合成的聚合氮样品在常压下难以保存,无法满足大规模材料制备的需要。为了降低合成压力并增强其稳定性,引入其它元素形成化合物被认为是一种有效的方法。人们已经在金属-氮体系中发现了丰富的聚合氮形式,如N5环、N链等,其物理机制是通过氮接收电荷来形成稳定的聚合氮基团。但是氮原子通过失去电荷形成聚合氮却十分罕见。为了全面了解电荷转移效应,研究团队提出引入电负性较强的F原子,探索新型带正电聚合氮的物质存在形式。


该工作采用遗传算法结合第一性原理计算研究了N-F体系在压力下的新组分、结构及性质,发现了两种聚合氮化合物NF和N6F,其中氮原子分别形成1D链和3D网状结构。NF化合物的能量密度为5.38 kJ/g和15.60 kJ/cm3,高出TNT的数值(4.3 kJ/g和7.05 kJ/cm3),是目前已报道二元共价含氮化合物中能量密度最高的材料。NF化合物中N和F原子形成共价键,是稳定其结构框架的关键。而N6F化合物中N和F则形成离子键,N原子向F原子转移电荷,3D聚合氮网格带正电,为合成新型聚合氮提供了依据。


计算物理与量子材料研究部张洁副研究员为论文的第一作者,王贤龙研究员和曾雉研究员为论文的通讯作者。该团队在高能密度氮材料体系中做了系列工作,前期已在Li2N2和KN3化合物中预测了具有螺旋N链和N6环特征的新型结构。


该项工作得到了国家自然科学基金的支持,所有计算均在中科院超算中心合肥分中心完成。


 文章链接:https://doi.org/10.1021/acs.jpclett.1c01181。


图. (a) N-F的形成焓曲线及两种含氮化合物的晶体结构图,其中红色和蓝色小球分别代表F原子和N原子;(b) 已报道二元含氮化合物的能量密度。


(中国粉体网编辑整理/星耀)

注:图片非商业用途,存在侵权请告知删除!


推荐3
相关新闻:
网友评论:
0条评论/0人参与 网友评论

版权与免责声明:

① 凡本网注明"来源:中国粉体网"的所有作品,版权均属于中国粉体网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:中国粉体网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

粉体大数据研究
  • 即时排行
  • 周排行
  • 月度排行
图片新闻