【原创】DPC陶瓷基板有何独特之处?关键技术有哪些?应用于哪些领域?


来源:中国粉体网   山川

[导读]  中国粉体网将在郑州举办“2021第四届新型陶瓷技术与产业高峰论坛”。届时,来自华中科技大学的陈明祥教授带来题为《高性能陶瓷电路板技术研发与应用》的报告。

中国粉体网讯


电子器件的散热有多重要?


对于电子器件而言,通常温度每升高10°C,器件有效寿命就降低30%~50%。因此,选用合适的封装材料与工艺、提高器件散热能力就成为发展功率器件的技术瓶颈。


 

(图片来源:深圳市金瑞欣特种电路技术有限公司)


陶瓷基板材料选择


良好的器件散热依赖于优化的散热结构设计、封装材料选择(热界面材料与散热基板)及封装制造工艺等。其中,基板材料的选用是关键环节,直接影响到器件成本、性能与可靠性。


目前,陶瓷基板虽然不是处于主导地位,但由于其良好的导热性、耐热性、绝缘性、低热膨胀系数和成本的不断降低,在电子封装特别是功率电子器件如IGBT(绝缘栅双极晶体管)、LD(激光二极管)、大功率LED(发光二极管)、CPV(聚焦型光伏)封装中的应用越来越广泛。陶瓷基板材料主要有Al2O3、BeO、AlN、Si3N4、SiC等。


(1)Al2O3陶瓷基板


Al2O3陶瓷基板由于价格低廉、力学性能较好,而且工艺技术纯熟,是目前应用最为广泛的陶瓷基板材料。但是Al2O3陶瓷的热导率较低(24W/(m•k),在一定程度上限制了其在大功率电子产品中的应用。


(2)BeO陶瓷基板


BeO陶瓷导热性能优良,综合性能良好,能够满足较高的电子封装要求,但是其热导率随温度波动变化较大,温度升高其热导率大幅下降。此外,BeO有剧毒,已逐渐淡出封装应用领域。


(3)SiC陶瓷基板


SiC陶瓷具有很高的热导率,热膨胀系数也与Si接近,而且SiC的物理性能较好,具有高耐磨性和高硬度,但是SiC是强共价键化合物,烧结温度高达2000多摄氏度,而且需要加入少量的烧结助剂才能烧结致密,导致SiC陶瓷基板制备能耗大,生产成本高。


(4)Si3N4陶瓷基板


Si3N4陶瓷的热导率与抗弯强度较高,能满足集成电路向高集成化、多层化、轻型化等特性发展,另外Si3N4陶瓷的强度和断裂韧性较高,耐热疲劳性能良好,是一种有着良好发展前景的高热导率高强度陶瓷基板材料。


(5)AlN陶瓷基板


AlN陶瓷作为一种新型的LED封装基板材料,具有热导率高(其理论热导率可达320W/(m•k))、强度高、热膨胀系数低、介电损耗小、耐高温及化学腐蚀,而且无毒环保等优良性能,是被国内外一致看好最具发展前景的一种陶瓷材料。


直接镀铜陶瓷基板(DPC)


 

(图片来源:同欣电子)


DPC又称直接镀铜陶瓷基板。其制作首先将陶瓷基片进行前处理清洗,利用真空溅射方式在基片表面沉积Ti/Cu层作为种子层,接着以光刻、显影、刻蚀工艺完成线路制作,最后再以电镀/化学镀方式增加线路厚度,待光刻胶去除后完成基板制作。

 


DPC基板制备工艺流程


DPC的优点与不足


优点:


(1)低温工艺(300℃以下),完全避免了高温对材料或线路结构的不利影响,也降低了制造工艺成本。


(2)采用薄膜与光刻显影技术,使基板上的金属线路更加精细(线宽尺寸20~30μm,表面平整度低于0.3μm,线路对准精度误差小于±1%),因此DPC基板非常适合对准精度要求较高的电子器件封装。


缺点:


(1)电镀沉积铜层厚度有限,且电镀废液污染大;


(2)金属层与陶瓷间的结合强度较低,产品应用时可靠性较低;


(3)电镀生长速度低,线路层厚度有限(一般控制在10μm~100μm),难以满足大电流功率器件封装需求。


DPC关键技术


1、金属线路层与陶瓷基片的结合强度


由于金属与陶瓷间热膨胀系数差较大,为降低界面应力,需要在铜层与陶瓷间增加过渡层,从而提高界面结合强度。由于过渡层与陶瓷间的结合力主要以扩散附着及化学键为主,因此常选择Ti、Cr和Ni等活性较高、扩散性好的金属作为过渡层(同时作为电镀种子层)。


2、电镀填孔


电镀填孔也是DPC陶瓷基板制备的关键技术。目前DPC基板电镀填孔大多采用脉冲电源,其技术优势包括:易于填充通孔,降低孔内镀层缺陷;表面镀层结构致密,厚度均匀;可采用较高电流密度进行电镀,提高沉积效率。


DPC基板应用


1、IGBT封装


绝缘栅双极晶体管以输入阻抗高、开关速度快、通态电压低、阻断电压高等特点,成为当今功率半导体器件发展主流。其应用小到变频空调、静音冰箱、洗衣机、电磁炉、微波炉等家用电器,大到电力机车牵引系统等。由于IGBT输出功率高,发热量大,因此对IGBT封装而言,散热是关键。目前IGBT封装主要采用DBC陶瓷基板,原因在于DBC具有金属层厚度大,结合强度高(热冲击性好)等特点。


2、LD封装


激光二极管(LD)又称半导体激光器,是一种基于半导体材料受激辐射原理的光电器件,具有体积小、寿命长、易于浦和集成等特点。广泛应用于激光通信、光存储、光陀螺、激光打印、测距以及雷达等领域。温度与半导体激光器的输出功率有较大关系。散热是LD封装关键。由于LD器件电流密度大,热流密度高,陶瓷基板成为LD封装的首选热沉材料。


3、LED封装


纵观LED技术发展,功率密度不断提高,对散热的要求也越来越高。由于陶瓷具有的高绝缘、高导热和耐热、低膨胀等特性,特别是采用通孔互联技术,可有效满足LED倒装、共晶、COB(板上芯片)、CSP(芯片规模封装)、WLP(圆片封装)封装需求,适合中高功率LED封装。


4、光伏(PV)模组封装


光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光直接转化为电能。由于聚焦作用导致太阳光密度增加,芯片温度升高,必须采用陶瓷基板强化散热。实际应用中,陶瓷基板表面的金属层通过热界面材料(TIM)分别与芯片和热沉连接,热量通过陶瓷基板快速传导到金属热沉上,有效提高了系统光电转换效率与可靠性。


中国粉体网将在郑州举办“2021第四届新型陶瓷技术与产业高峰论坛”。届时,来自华中科技大学陈明祥教授带来题为《高性能陶瓷电路板技术研发与应用》的报告,陈明祥教授将重点介绍电镀陶瓷基板(DPC)技术研发、产业化及其在功率半导体、高温电子器件、高频晶振、小型热电制冷器TEC等领域应用,并对相关技术发展进行展望。(鉴于当前防控需要,原定于2021年8月13-14日在郑州喆鹏酒店举办的“第四届新型陶瓷技术与产业高峰论坛”将延期举办,计划参会的单位可以联系会务组,具体举办日期主办方确定后将第一时间通知您!)


专家介绍:


陈明祥,华中科技大学机械学院教授/博士生导师,武汉光电国家研究中心研究员,广东省珠江学者讲座教授。本科和硕士毕业于武汉理工大学材料学院,博士毕业于华中科技大学光电学院,美国佐治亚理工学院封装研究中心博士后。主要从事先进电子封装与微纳制造技术研究,主持和参与各类科研项目20余项,发表学术论文60余篇(其中SCI检索40余篇),获授权发明专利20余项(其中DPC陶瓷基板技术已通过专利转让实现产业化)。曾获国家技术发明二等奖(2016)、教育部技术发明一等奖(2015)、武汉东湖高新区“3551光谷人才”(2012)、广东省科学技术三等奖(2010)等。


参考来源:

[1]程浩,陈明祥等.电子封装陶瓷基板

[2]程浩,陈明祥等.功率电子封装用陶瓷基板技术与应用进展

[3]吴朝晖,陈明祥等.大功率LED封装基板技术与发展现状


(中国粉体网编辑整理/山川)

注:图片非商业用途,存在侵权告知删除


识别二维码了解更多会议信息


会务组

联系人:孔德宇

电  话:13661293507(同微信)

Email :1760047578@qq.com

推荐5

作者:山川

总阅读量:9016046

相关新闻:
网友评论:
0条评论/0人参与 网友评论

版权与免责声明:

① 凡本网注明"来源:中国粉体网"的所有作品,版权均属于中国粉体网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:中国粉体网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

粉体大数据研究
  • 即时排行
  • 周排行
  • 月度排行
图片新闻