物理所发现铜基高温超导新材料


来源:物理研究所

[导读]  中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室研究员靳常青与合作者长期开展铜基超导材料新结构的设计和高压合成,研究对象集中在铜和碱土氧化物体系,这是能够形成铜基超导基本结构的最简单化学组分。选择这个简单组分的独到之处在于既可聚焦产生铜基超导的核心要素,又可回避铜基超导材料在常压制备需要的稀土、铋、汞等昂贵和有毒元素,有助于新材料的进一步应用拓展。

中国粉体网讯  铜氧化物高温超导体(简称铜基超导)是常压条件下迄今转变温度最高的超导材料体系,对它的微观机制破解入选Science 125个重大科学难题,目前依然是凝聚态物质科学最大的谜团和挑战之一。由于铜基超导体很强的Jahn Teller效应和层间库伦作用,沿c方向的铜氧键长大于铜氧平面内的键长,导致基本电子构型的铜氧六配位八面体呈现拉伸状态。对于拉伸型的配位结构,铜的3d x2–y2 轨道位于3z2-r2轨道之上,且和面内氧的2P轨道强烈杂化。这个图像构成对铜基超导材料认识的出发点(参阅:Keimer et al Nature 518, 179~186 (2015))。


中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室研究员靳常青与合作者长期开展铜基超导材料新结构的设计和高压合成,研究对象集中在铜和碱土氧化物体系,这是能够形成铜基超导基本结构的最简单化学组分。选择这个简单组分的独到之处在于既可聚焦产生铜基超导的核心要素,又可回避铜基超导材料在常压制备需要的稀土、铋、汞等昂贵和有毒元素,有助于新材料的进一步应用拓展。运用高压高温制备技术,他们相继发现了“铜系”(Physica C 223, 238 (1994); Phys. Rev. B 61, 778(2000)); 中国科学48, 87405 (2018))、“顶角氧”掺杂系(Nature 375, 301(1995); Phys. Rev. B 74 , 100506(R) (2006);Phys. Rev. B 80, 94523 (2009)(Editor’s Suggestion))等具有新结构的铜基超导材料体系。其中“铜系”超导材料的Tc可高达118K,并入选《科学通报》纪念液氮温区超导材料发现30周年纪念专辑的封面(科学通报 62, 3947(2017)),团队20余年围绕铜基超导新材料的系统研究在国际上已形成自己的特色。


通过十万巴级超高氧压合成技术的创新(MRS Advances 2, 2587 (2017)),靳常青指导研究生李文敏制备发现了一类全新的超导材料Ba2CuO4-y。这是目前唯一呈现压缩型铜氧局域配位的铜基超导材料。对于压缩型配位构型,铜的3d 3z2-r2轨道将位于x2-y2轨道之上,显著有别于“传统”拉伸型配位的轨道序。X射线吸收谱实验表明,Ba2CuO4-y超导体处于超过掺杂区,对应“传统”铜基超导体的非超导相区。现有主流理论认为,压缩型配位构型、超过掺杂载流子浓度、以及可能的特殊的面内结构都不利于超导,Ba2CuO4-y仍然表现出了具有高达73K的超导转变温度。与基本晶体结构相同,具有正常轨道序的La2CuO4体系相比,Ba2CuO4-y的Tc提高了80%以上。这些实验现象表明,不同于以往传统类型,Ba2CuO4-y属于一类全新的铜基超导材料。以上工作近期发表在《美国国家科学院院刊》上(W. M. Li et al. PNAS 116, 12156 (2019))。美国科学院院士、巴丁奖得主,著名超导理论专家Scalapino教授以《高温超导家族不同分支》(A different branch of the high Tc family)为题,在同期撰写专题评介。美国国家标准局教授Q.Z.Huang、德国马普物理化学研究所教授Z.W.Hu、美国哥伦比亚大学教授Uemura在中子衍射、光电子吸收谱和uSR谱等实验表征上给予密切合作,美国佛罗里达大学教授Stewart、日本东京大学教授Uchida参与了实验结果讨论;研究工作得到国家重大研发计划和基金委重大国际合作项目的资助。



(中国粉体网编辑整理/江岸)

注:图片非商业用途,如侵权告知删除


推荐10
相关新闻:
网友评论:
0条评论/0人参与 网友评论

版权与免责声明:

① 凡本网注明"来源:中国粉体网"的所有作品,版权均属于中国粉体网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:中国粉体网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

粉体大数据研究
  • 即时排行
  • 周排行
  • 月度排行
图片新闻