近期,中科院上海应用物理研究所物理生物学实验室樊春海、李迪、黄庆课题组的研究人员合作,在金纳米粒子的催化研究领域取得了系列进展。相关论文已发表在国际著名刊物Angew. Chem. Int. Ed.和ACS nano上。
金元素的d 轨道电子是完全充满的,并且第一电离能很大,很难失去电子,因而一直以来被认为是惰性的金属。然而近年来的研究却表明,负载于载体上的纳米金颗粒对CO,NO等的氧化反应有很强的催化活性,显示出重要的工业应用前景。上海应用物理所的研究人员发现,金纳米粒子可以在液相中对葡萄糖的氧化具有很强的催化活性,其催化机制类似于天然的葡萄糖氧化酶且具有更好的pH和温度稳定性。他们利用这种类似天然生物酶的金纳米粒子催化活性与金纳米粒子的催化生长耦合,实现了金纳米粒子的尺寸、形貌和催化活性的同时控制,并提出了一种自限的生长机制。相关工作发表在ACS Nano(2010, 4, 745-7458)。
进一步研究表明,DNA分子可以调控这种自限生长过程。单链DNA分子可以强烈吸附在金纳米粒子表面,抑制其催化活性,从而抑制其生长过程;而双链DNA分子与金纳米粒子的作用力较弱,而较少抑制其生长过程。他们通过与华东理工大学龙亿涛教授的合作,利用暗场光学显微镜技术可以实时、动态地观测DNA分子对单个金纳米粒子生长过程的影响。相关工作发表在Angew. Chem. Int. Ed.(2011, 50, 11994-11998)上。
该项研究有助于深入理解金纳米粒子的催化机制,并可能利用金纳米粒子的等离子体激元光学性质实现DNA分析。
金元素的d 轨道电子是完全充满的,并且第一电离能很大,很难失去电子,因而一直以来被认为是惰性的金属。然而近年来的研究却表明,负载于载体上的纳米金颗粒对CO,NO等的氧化反应有很强的催化活性,显示出重要的工业应用前景。上海应用物理所的研究人员发现,金纳米粒子可以在液相中对葡萄糖的氧化具有很强的催化活性,其催化机制类似于天然的葡萄糖氧化酶且具有更好的pH和温度稳定性。他们利用这种类似天然生物酶的金纳米粒子催化活性与金纳米粒子的催化生长耦合,实现了金纳米粒子的尺寸、形貌和催化活性的同时控制,并提出了一种自限的生长机制。相关工作发表在ACS Nano(2010, 4, 745-7458)。
进一步研究表明,DNA分子可以调控这种自限生长过程。单链DNA分子可以强烈吸附在金纳米粒子表面,抑制其催化活性,从而抑制其生长过程;而双链DNA分子与金纳米粒子的作用力较弱,而较少抑制其生长过程。他们通过与华东理工大学龙亿涛教授的合作,利用暗场光学显微镜技术可以实时、动态地观测DNA分子对单个金纳米粒子生长过程的影响。相关工作发表在Angew. Chem. Int. Ed.(2011, 50, 11994-11998)上。
该项研究有助于深入理解金纳米粒子的催化机制,并可能利用金纳米粒子的等离子体激元光学性质实现DNA分析。